Filament Wound Tube Stress Analysis from Cadfil - Drive Shaft

Output D01.txt - Initial design of a drive shaft

----------------------------------------------------------------------------------------------------
 Cadfil Pipe Stress Module V1.01
 Results for the analysis of a composite tube
 Units are Strict SI - Distance [m], Stress/Stiffness [N/m2], Area [m2], Section Inertia [m4]
----------------------------------------------------------------------------------------------------

 GEOMETRY
 Length of Tube     :    4.500E+00
 Outside diameter   :  156.000E-03
 Inner diameter     :  150.000E-03
 Thickness          :    3.000E-03
 Angle of Plies(+/-):   45.000E+00

 MATERIAL DATA
 Material Name         : Carbon/Epoxy-55%- (Zoltec 228GPa) ISSN1819-6608 Vol3 No4 Aug 2008
 Density            :    1.487E+03
 Ex 0 degree Modulus:  101.000E+09
 Ex 90 deg.  Modulus:    5.720E+09
 vx Poissons Ratio  :  310.000E-03
 G shear Modulus    :    4.350E+09

 CALCULATED PROPERTIES
 Mass               :    9.649E+00
 Area               :    1.442E-03
 IXX (J)            :    8.442E-06
 IYY=IZZ (I)        :    4.221E-06
 ZY                 :   54.116E-06
 KY                 :   87.714E-03
 E1 (axial)         :   15.040E+09
 E2 (hoop)          :   15.040E+09
 v12 (axial v)      :  728.697E-03
 v21 (trans v)      :  728.697E-03
 Shear Modulus      :   25.935E+09
 Eeq                :   15.040E+09
 veq                :  728.697E-03
 Fn (nat. freq. Hz) :   13.347E+00
 60Fn ( 1/min)      :  800.829E+00
 LOADS
 Axial load         :    0.000E+00
 Torque             :    1.000E+03
 Resolved Shear     :    0.000E+00
 Resolved Bending   :    0.000E+00
 Internal Pressure  :    0.000E+00


 ASSUMPTIONS.
 The Package Uses Thin Shell Theory For Pressure Loads.
 Y-Y And Z-Z Bending Moments Are Resolved By Pythagoras.
 Maximum And Minimum Bending Stresses Are Considered Independently.
 No Local Bending Is Considered In The Laminate.
 Constant Strain Through The Laminate Thickness.
 Quadratic Failure Criteria To Calculate Strength Ratios.
 Normalised Interaction Term Assumed As -1/2.
 Cowpers Formula is Used To Calculate Shear Coefficient.
 UTS Taken As Strength Of Unidirectional Composite.
 Cross-Over Effects In Layers Are Ignored.


 IN-PLANE STRESSES                                   SIG1             SIG2             SIG6
 Negative Bending Moment                            0.0000E+00       0.0000E+00       9.2394E+06
 Positive Bending Moment                            0.0000E+00       0.0000E+00       9.2394E+06

 PRINCIPLE IN-PLANE STRESSES                         SIGP1           SIGP2
 Negative Bending Moment                            9.2394E+06      -9.2394E+06
 Positive Bending Moment                            9.2394E+06      -9.2394E+06

 IN-PLANE STRESS INVARIANTS                             I              R              PHASE
 Negative Bending Moment                            0.0000E+00       9.2394E+06      45.0000E+00
 Positive Bending Moment                            0.0000E+00       9.2394E+06      45.0000E+00

 INTER-LAMINA SHEAR                                   SIGXZ
 Negative Bending Moment                            0.0000E+00
 Positive Bending Moment                            0.0000E+00

 IN-PLANE STRAINS                                      e1               e2               e6
 Negative Bending Moment                            0.0000E+00       0.0000E+00     356.2571E-06
 Positive Bending Moment                            0.0000E+00       0.0000E+00     356.2571E-06

 ON-AXIS MATERIAL STRAINS                              ex               ey               es
 Negative Bending Moment Negative Angle Layer    -178.1285E-06     178.1285E-06     -15.5725E-12
 Negative Bending Moment Positive Angle Layer     178.1285E-06    -178.1285E-06     -15.5725E-12
 Positive Bending Moment Negative Angle Layer    -178.1285E-06     178.1285E-06     -15.5725E-12
 Positive Bending Moment Positive Angle Layer     178.1285E-06    -178.1285E-06     -15.5725E-12

 ON-AXIS MATERIAL STRESSES                            SIGX             SIGY             SIGS
 Negative Bending Moment Negative Angle Layer     -17.7718E+06     706.8849E+03     -67.7403E-03
 Negative Bending Moment Positive Angle Layer      17.7718E+06    -706.8849E+03     -67.7403E-03
 Positive Bending Moment Negative Angle Layer     -17.7718E+06     706.8849E+03     -67.7403E-03
 Positive Bending Moment Positive Angle Layer      17.7718E+06    -706.8849E+03     -67.7403E-03

 FOS FOR ON-AXIS STRESSES                     +SIGX          -SIGX          +SIGY          -SIGY           SIGS
                                            84.403E+00      84.403E+00      56.586E+00     348.006E+00       1.004E+09

 STRENGTH RATIOS FOR GIVEN ON-AXIS STRAINS             R               R`
 Negative Bending Moment Negative Angle Layer      39.102E+00     -92.801E+00
 Negative Bending Moment Positive Angle Layer      92.801E+00     -39.102E+00
 Positive Bending Moment Negative Angle Layer      39.102E+00     -92.801E+00
 Positive Bending Moment Positive Angle Layer      92.801E+00     -39.102E+00

 CRITICAL BUCKLING STRESSES                          TORCR1          TORCR2          SIGCR
 (TORSION METHODS 1 AND 2 AND COMPRESSION)
 Negative Bending Moment                           21.558E+06      36.973E+06     487.660E+06

 FOS ON CRITICAL BUCKLING                            TORCR1          TORCR2          SIGCR
 (TORSION METHODS 1 AND 2 AND COMPRESSION)
 Negative Bending Moment                            2.333E+00       4.002E+00       0.000E+00
 Positive Bending Moment                            2.333E+00       4.002E+00       0.000E+00

 FOS ON INTER-LAMINA SHEAR BASED ON UTS OF
  DIRECTIONAL LAYER
 Negative Bending Moment                            0.000E+00
 Positive Bending Moment                            0.000E+00
----------------------------------------------------------------------------------------------------
Updated: February 2013